If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+14x-9.6=0
a = 1; b = 14; c = -9.6;
Δ = b2-4ac
Δ = 142-4·1·(-9.6)
Δ = 234.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-\sqrt{234.4}}{2*1}=\frac{-14-\sqrt{234.4}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+\sqrt{234.4}}{2*1}=\frac{-14+\sqrt{234.4}}{2} $
| n+6/14=6/7 | | q2+10q+20=0 | | -x-12x=4 | | R^2+9r+6=0 | | 2z+13=4z+3 | | 3-(x-1)=(x+5+4x) | | 3(x-1)=(x+5+4x) | | 2n+9=41 | | 12-2k=10-2k | | 2x-1/2x=33 | | 4(5y+12)=-52 | | 5(2x-3)=6(×+2)-11 | | 52x-3)=6(×+2)-11 | | 6u+6=7u+6 | | 7w-16=-18w+14 | | 5x^2=-(10+2) | | x/4+12=28 | | t*6-4=15 | | n-5.9n-6.5=0.5(n-4.6) | | 26−2x=8x−44 | | -16(y+1/6=2/3(y+1/6) | | 2x+1=(x+2)^(1/2) | | 4/5(n-3/4)=1/5(n+3/4) | | (7x-3)/2+2=5(x-2) | | (4x+6)/2=3x+4 | | 6x+48=4x-28 | | 3x=7(8-2x) | | 5x+20=2x+13 | | 27x-27=26x-26 | | 6m+11=35-m | | 2x−10=8 | | 7x(2x-3)=8x+39 |